

- Specification
- Surface Prep
- Application
- Quality Control

Heat Shrink Sleeves

May 15, 2012

Jack Wink UMAC, Inc

Prevent corrosion !

Coatings need to have


- high electrical resistance
- low permeability to hydrogen and oxygen
- mechanical strength
- chemical stability

Irradiation Cross-linking

- High energy electrons are used to strike the molecules at the CH bond
- The hydrogen atom is set free leaving the parent carbon atom as a "free radical"
- At adjacent sites, the free radicals use their energy to form a chemical bond
- This bond is called a cross-link

Polyolefin Cross-linking

Polyolefin (before) Irradiation processing

Cross-linked Polyolefin (after)

Properties of Cross-linked Backings

C

H

C

Η

H

С

Н

C

н

- Imparts Elastic Memory
- Increases Tensile Strength
- Increases Impact Resistance
- Increases Abrasion Resistance
- Increases Insulation Value


General Design Criteria

- Ultimate performance dependent upon installation and surface preparation.
- Installation is typically more critical with more demanding performance in service.
- Ideal shrink sleeve can be installed in the harshest of climates by unskilled labor and is insensitive to pipe surface contamination.

Heat-Shrinkable Sleeve System

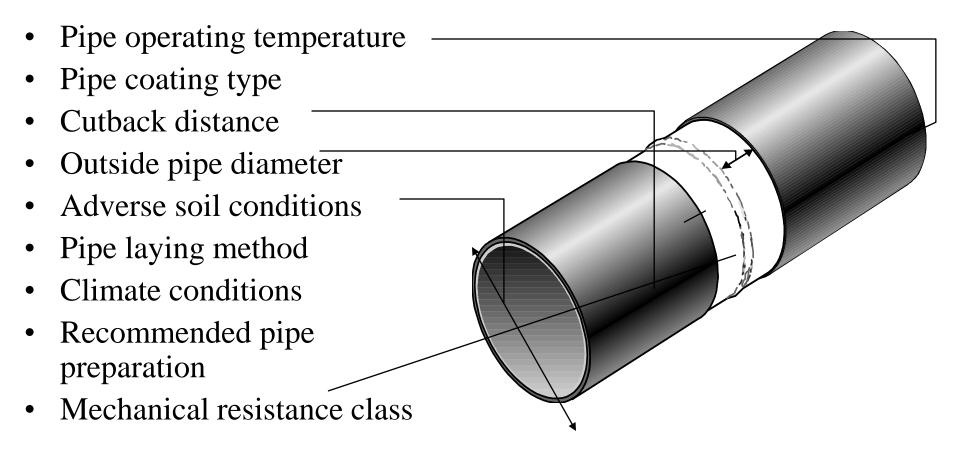
- Sleeves consist of a backing and adhesive
- The backing needs to be cross-linked in order to be heat shrinkable
- The adhesive has several functions:
 - corrosion protection, shear resistance, long term adhesion to the steel, bond to the coating...
- Design of the backing and adhesive dictates performance at operating temperature

Heat-Shrinkable Sleeve System

Polyolefin Support

• Provides the mechanical protection while assisting in the bonding the adhesive with hoop stresses provided by the elastic memory.

• Must withstand excessive heat without splitting, melting or pinholing.


Polyolefin Support

- Must withstand punishment of laying operation.
- Will be flexible in cold climates yet tough in hot, tropical climates.
- In above ground service, must avoid degradation by U.V.

Adhesive

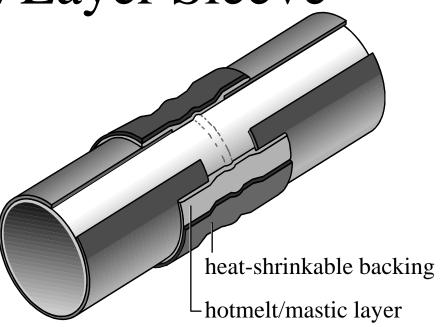
- Must be sensitive to surface preparation and preheating limitations.
- Provide an effective bond to steel.
- Must bond to the adjacent coating, critical to know coating compatibility.
- Provide good cathodic disbondment resistance.
- Resist soil stress and pipe movement.

Selecting the sleeve


Hot Melts vs. Mastics

- Precise melt point, preheat temperature is critical.
- Anchor pattern and surface preparation are critical.
- Ensure that higher preheat temperature does not damage main line coating.

- Mastics more forgiving in the field under extreme conditions.
- Tackiness and pressure sensitive nature of mastics allow for good performance with less than perfect surface preparation.


What is important to install?

- Suitable surface preparation
- Use of the proper tools
- Primer application (if used)
- Achieve the correct pre-heat
- Sleeve centered on the cutback
- Correct overlap to the coating
- Closure properly installation
- Correct procedure for shrinking
- Visual Inspection
- Field Peel Test
- Holiday Detection

Wraparound 2 Layer Sleeve

- Installation directly on cleaned and dried pipe surface
- Compatible with standard commercial mill-applied coatings
- No primer required

Preheat Surface Area

Center & Loosely Wrap Sleeve around Joint

EVER CO.CONTE

Applying one end of Sleeve

1722.8-2-03

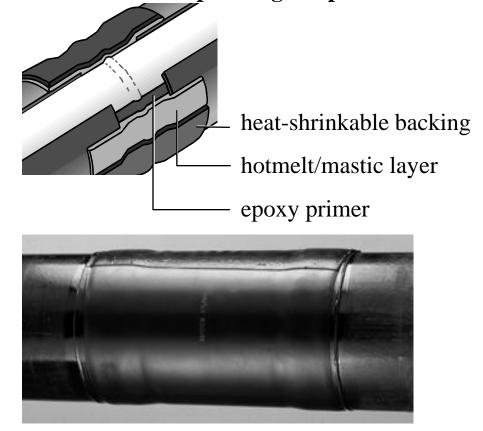
Flash adhesive & bring up other half of sleeve

Secure closure strip by heating

SLEW LD

121 EMI 13121

Permanent Change Indicator: dimples are gone after proper heating.

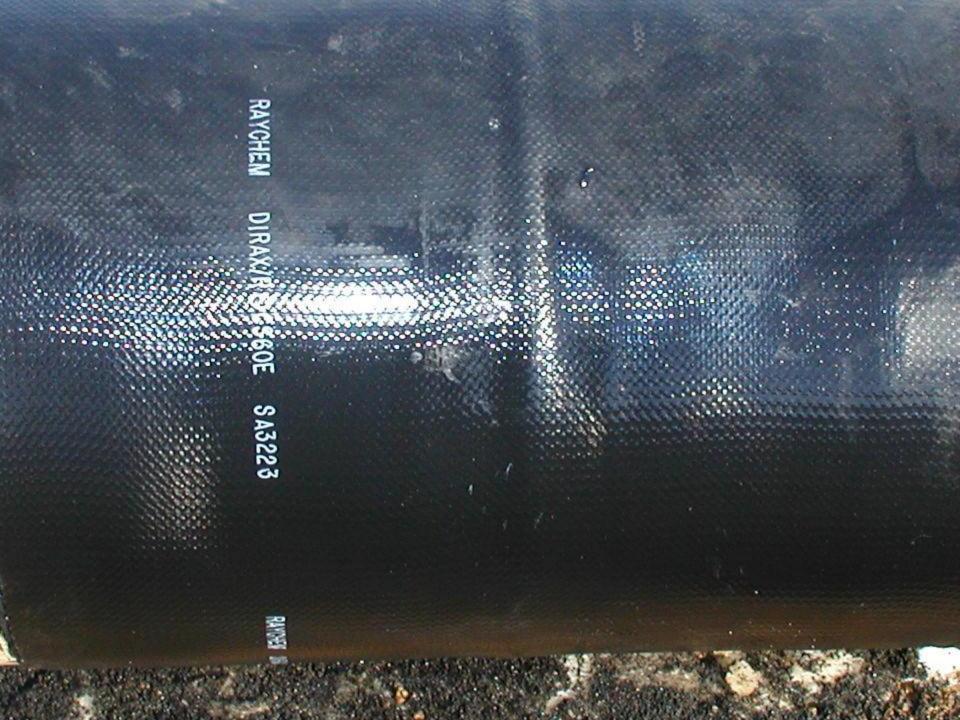

Shrink from center to one end, 360 degrees

TTU MA312

Wraparound 3 Layer Sleeve

Three-layer coating for pipes with ambient and elevated operating temperature

- Epoxy first layer for superior bonding and chemical resistance
- Resist high soil shear forces
- Superior cathodic disbondment
- Superior high temp. performance
- Low preheat requirements



Sleeve Application Summary

Sleeve Type	Surface Prep	Preheat
Mastic	Wire Brush	140°F
3 Layer (Hot Melt)	Blast to white metal finish	160°F
Hot Melt	Blast to white metal finish	240°F +

Coatings of fittings Bends

Heat Shrink Tape

- Highly flexible, hand installed tape
- Minimal inventory

Tubular Heat Shrink Sleeves

Two-layer coating for pipes with ambient operating temperature up to 30°C (86°F)

- Only handbrush or wirebrush required
- No closure patch, easy to install
- High impact strength and penetration resistance
- Thermal indicator (TPS)

Shrink Sleeves for casings / flanges

- Fiberglass reinforced: mechanical strength, high impact strength, high penetration resistance
- Convenient wraparound design
- High shrink ratio (65%)

Special applications

Three-layer coating for horizontal or directional drilling

- Extremely high shear and peel strength
- Fiber-reinforced sleeve, excellent abrasion resistance
- No 'curing time' just cool and use immediately
- Superior cathodic disbondment
- Simple installation without special tools

